Efficient maximum likelihood parameterization of continuous-time Markov processes.
نویسندگان
چکیده
Continuous-time Markov processes over finite state-spaces are widely used to model dynamical processes in many fields of natural and social science. Here, we introduce a maximum likelihood estimator for constructing such models from data observed at a finite time interval. This estimator is dramatically more efficient than prior approaches, enables the calculation of deterministic confidence intervals in all model parameters, and can easily enforce important physical constraints on the models such as detailed balance. We demonstrate and discuss the advantages of these models over existing discrete-time Markov models for the analysis of molecular dynamics simulations.
منابع مشابه
Efficient maximum likelihood estimation for Lévy-driven Ornstein-Uhlenbeck processes
We consider the problem of efficient estimation of the drift parameter of an Ornstein-Uhlenbeck type process driven by a Lévy process when high-frequency observations are given. The estimator is constructed from the time-continuous likelihood function that leads to an explicit maximum likelihood estimator and requires knowledge of the continuous martingale part. We use a thresholding technique ...
متن کاملOn $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov processes
In the present paper we investigate the $L_1$-weak ergodicity of nonhomogeneous continuous-time Markov processes with general state spaces. We provide a necessary and sufficient condition for such processes to satisfy the $L_1$-weak ergodicity. Moreover, we apply the obtained results to establish $L_1$-weak ergodicity of quadratic stochastic processes.
متن کاملMaximum likelihood trajectories for continuous-time Markov chains
Continuous-time Markov chains are used to model systems in which transitions between states as well as the time the system spends in each state are random. Many computational problems related to such chains have been solved, including determining state distributions as a function of time, parameter estimation, and control. However, the problem of inferring most likely trajectories, where a traj...
متن کاملQuantification of Cloud Microphysical Parameterization Uncertainty Using Radar Reflectivity
Uncertainty in cloud microphysical parameterization—a leading order contribution to numerical weather prediction error—is estimated using a Markov chain Monte Carlo (MCMC) algorithm. An inversion is performed on 10 microphysical parameters using radar reflectivity observations with vertically covarying error as the likelihood constraint. An idealized 1D atmospheric column model with prescribed ...
متن کاملEfficient ML training of CDHMM parameters based on prior evolution, posterior intervention and feedback
We present an efficient maximum likelihood (ML) training procedure for Gaussian mixture continuous density hidden Markov model (CDHMM) parameters. This procedure is proposed using the concept of approximate prior evolution, posterior intervention and feedback (PEPIF). In a series of experiments for training CDHMMs for a continuous Mandarin Chinese speech recognition task, the new PEPIF procedur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 143 3 شماره
صفحات -
تاریخ انتشار 2015